Imputers
Imputers
ApplyRollingImputer
Bases: TransformerStep
Impute missing values using a function over a rolling window
Parameters:
Name | Type | Description | Default |
---|---|---|---|
window_size |
int
|
Window size of the rolling window |
required |
func |
callable
|
The function to call in each window |
required |
Source code in ceruleo/transformation/features/imputers.py
fit(X)
Compute a default value in case there are not valid values in the rolling window
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
Source code in ceruleo/transformation/features/imputers.py
partial_fit(X)
Compute incrementally the mean value to use as default value to impute
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
Source code in ceruleo/transformation/features/imputers.py
transform(X)
Transform the input life
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life to be transformed |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A new life with the same index as the input with the missing values replaced by the output of the function supplied |
Source code in ceruleo/transformation/features/imputers.py
BackwardFillImputer
Bases: TransformerStep
Impute forward filling the values
Source code in ceruleo/transformation/features/imputers.py
transform(X)
Transform the input life
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life to be transformed |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A new life with the same index as the input with the missing values replaced by the value in the previous timestamp |
Source code in ceruleo/transformation/features/imputers.py
FillImputer
Bases: TransformerStep
Source code in ceruleo/transformation/features/imputers.py
transform(X)
Transform the input life
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life to be transformed |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A new life with the same index as the input with the missing values replaced by the value specified in the input |
Source code in ceruleo/transformation/features/imputers.py
ForwardFillImputer
Bases: TransformerStep
Impute forward filling the values
Source code in ceruleo/transformation/features/imputers.py
transform(X)
Transform the input life
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life to be transformed |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A new life with the same index as the input with the missing values replaced by the value in the succesive timestamp |
Source code in ceruleo/transformation/features/imputers.py
MeanImputer
Bases: TransformerStep
Impute missing values with the mean value of the training set
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
Optional[str]
|
The name of the step |
None
|
Source code in ceruleo/transformation/features/imputers.py
fit(X, y=None)
Compute the mean value
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
partial_fit(X, y=None)
Compute the mean value incrementally
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
Source code in ceruleo/transformation/features/imputers.py
transform(X, y=None)
Return a new dataframe with the missing values replaced by the fitted mean
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A new DataFrame with the same index as the input with the Na values replaced by the fitted mean |
Source code in ceruleo/transformation/features/imputers.py
MedianImputer
Bases: TransformerStep
Impute missing values with the median value of the training set
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
Optional[str]
|
The name of the step |
None
|
Source code in ceruleo/transformation/features/imputers.py
fit(X, y=None)
Compute the median value
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
partial_fit(X)
Compute the median value incrementally
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
Source code in ceruleo/transformation/features/imputers.py
transform(X, y=None)
Return a new dataframe with the missing values replaced by the fitted median
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A new DataFrame with the same index as the input with the Na values replaced by the fitted median |
Source code in ceruleo/transformation/features/imputers.py
NaNtoInf
Bases: TransformerStep
Replace NaN for inf
Source code in ceruleo/transformation/features/imputers.py
transform(X, y=None)
Transform the input life replacing Nan for inf
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
Input Dataframe to be transformed |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A dataframe with she same index as the input with the NaN values replaced with inf |
Source code in ceruleo/transformation/features/imputers.py
PerColumnImputer
Bases: TransformerStep
Impute the values of each column following a simple rule
The imputing is made following this rule
- -np.inf -> min
- np.inf -> max
- nan -> median
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
Optional[str]
|
Step name, by default None |
None
|
Source code in ceruleo/transformation/features/imputers.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
description()
Transformation's Description
Returns:
Type | Description |
---|---|
tuple
|
A tuple with the transformation name and the Max, Min and Median values for each feature. |
Source code in ceruleo/transformation/features/imputers.py
fit(X, y=None)
Fit the transformation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
Source code in ceruleo/transformation/features/imputers.py
partial_fit(X, y=None)
Fit the transformation incrementally
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
Source code in ceruleo/transformation/features/imputers.py
transform(X, y=None)
Apply the transformation to the input life
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
The input life |
required |
Source code in ceruleo/transformation/features/imputers.py
RollingMeanImputer
Bases: ApplyRollingImputer
Impute missing values with the mean value on a rolling window
Parameters:
Name | Type | Description | Default |
---|---|---|---|
window_size |
int
|
Window size of the rolling window |
required |
Source code in ceruleo/transformation/features/imputers.py
RollingMedianImputer
Bases: ApplyRollingImputer
Impute missing values with the median value on a rolling window
Parameters:
Name | Type | Description | Default |
---|---|---|---|
window_size |
int
|
Window size of the rolling window |
required |