Batcher
Batcher
Batching capabilities
Many machine learning models require data to be provided in the form of mini batches. This module interacts with iterators to generate batches. In particular, this module was created to be used with pytorch models.
Take a look at the pytorch example to see its usage.
Batcher
WindowedIterator Batcher
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iterator |
WindowedDatasetIterator
|
Dataset iterator |
required |
batch_size |
int
|
int |
required |
Source code in ceruleo/iterators/batcher.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|
input_shape: Tuple[int, int]
property
Tuple containing (window_size, n_features)
Returns:
Type | Description |
---|---|
Tuple[int, int]
|
(window_size, n_features) |
n_features: int
property
Number of features of the transformed dataset
This is a helper method to obtain the transformed dataset information from the WindowedDatasetIterator
Returns:
Type | Description |
---|---|
int
|
Number of features of the transformed dataset |
output_shape: int
property
Number of values returned as target by each sample
Returns:
Type | Description |
---|---|
int
|
Number of values returned as target by each sample |
window_size: int
property
Lookback window size
This is a helper method to obtain the WindowedDatasetIterator information
Returns:
Type | Description |
---|---|
int
|
Lookback window size |
__len__()
Number of batches
Returns:
Type | Description |
---|---|
int
|
Number of batches in the iterator |
new(dataset, window, batch_size, step, horizon=1, shuffler=NotShuffled(), sample_weight=NotWeighted(), right_closed=True, padding=False)
staticmethod
Batcher constructor from a dataset
The method constructs a WindowedDatasetIterator from the dataset and then a Batcher from the iterator. Most of the parameters come from the WindowedDatasetIterator,
Example
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
AbstractPDMDataset
|
Dataset from which the batcher will be created |
required |
batch_size |
int
|
Batch size |
required |
step |
int
|
strides |
required |
horizon |
int
|
Size of the horizon to predict. |
1
|
shuffle |
AbstractShuffler |
required | |
sample_weight |
SampleWeight
|
SampleWeight |
NotWeighted()
|
right_closed |
bool
|
bool |
True
|
padding |
bool
|
wheter to pad data if there are not enough points to fill the window |
False
|
Returns:
Type | Description |
---|---|
Batcher
|
A new constructed batcher |