Feature distribution
features_divergeces(ds, number_of_bins=15, columns=None, show_progress=False)
Compute the divergence between features
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
ds | 
AbstractPDMDataset
 | 
 The dataset  | 
required | 
number_of_bins | 
int
 | 
 Number of bins  | 
15
 | 
columns | 
Optional[List[str]]
 | 
 Which columns to use  | 
None
 | 
Returns:
| Type | Description | 
|---|---|
DataFrame
 | 
 A DataFrame in which each row contains the distances between a feature of two run-to-failure cycle with the following columns: 
  | 
Source code in ceruleo/dataset/analysis/distribution.py
histogram_per_cycle(cycle, feature, bins_to_use, normalize=True)
Compute the histogram of a feature in a run-to-failure cycle
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
cycle | 
DataFrame
 | 
 The run-to-failure cycle  | 
required | 
feature | 
str
 | 
 The feature to compute the histogram  | 
required | 
bins_to_use | 
ndarray
 | 
 Number of bins to use  | 
required | 
normalize | 
bool
 | 
 Wheter to normalize the histogram. Defaults to True.  | 
True
 | 
Returns:
| Type | Description | 
|---|---|
List[ndarray]
 | 
 List[np.ndarray]: The histogram of the feature  |