Feature distribution
features_divergeces(ds, number_of_bins=15, columns=None, show_progress=False)
Compute the divergence between features
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ds |
AbstractPDMDataset
|
The dataset |
required |
number_of_bins |
int
|
Number of bins |
15
|
columns |
Optional[List[str]]
|
Which columns to use |
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
A DataFrame in which each row contains the distances between a feature of two run-to-failure cycle with the following columns:
|
Source code in ceruleo/dataset/analysis/distribution.py
histogram_per_cycle(cycle, feature, bins_to_use, normalize=True)
Compute the histogram of a feature in a run-to-failure cycle
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cycle |
DataFrame
|
The run-to-failure cycle |
required |
feature |
str
|
The feature to compute the histogram |
required |
bins_to_use |
ndarray
|
Number of bins to use |
required |
normalize |
bool
|
Wheter to normalize the histogram. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
List[ndarray]
|
List[np.ndarray]: The histogram of the feature |